Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Sci Adv ; 8(35): eabq5206, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36044572

RESUMO

Nucleic acid and histone modifications critically depend on the tricarboxylic acid (TCA) cycle for substrates and cofactors. Although a few TCA cycle enzymes have been reported in the nucleus, the corresponding pathways are considered to operate in mitochondria. Here, we show that a part of the TCA cycle is operational also in the nucleus. Using 13C-tracer analysis, we identified activity of glutamine-to-fumarate, citrate-to-succinate, and glutamine-to-aspartate routes in the nuclei of HeLa cells. Proximity labeling mass spectrometry revealed a spatial vicinity of the involved enzymes with core nuclear proteins. We further show nuclear localization of aconitase 2 and 2-oxoglutarate dehydrogenase in mouse embryonic stem cells. Nuclear localization of the latter enzyme, which produces succinyl-CoA, changed from pluripotency to a differentiated state with accompanying changes in the nuclear protein succinylation. Together, our results demonstrate operation of an extended metabolic pathway in the nucleus, warranting a revision of the canonical view on metabolic compartmentalization.

2.
Nat Commun ; 9(1): 3315, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30120239

RESUMO

Mutations causing aberrant splicing are frequently implicated in human diseases including cancer. Here, we establish a high-throughput screen of randomly mutated minigenes to decode the cis-regulatory landscape that determines alternative splicing of exon 11 in the proto-oncogene MST1R (RON). Mathematical modelling of splicing kinetics enables us to identify more than 1000 mutations affecting RON exon 11 skipping, which corresponds to the pathological isoform RON∆165. Importantly, the effects correlate with RON alternative splicing in cancer patients bearing the same mutations. Moreover, we highlight heterogeneous nuclear ribonucleoprotein H (HNRNPH) as a key regulator of RON splicing in healthy tissues and cancer. Using iCLIP and synergy analysis, we pinpoint the functionally most relevant HNRNPH binding sites and demonstrate how cooperative HNRNPH binding facilitates a splicing switch of RON exon 11. Our results thereby offer insights into splicing regulation and the impact of mutations on alternative splicing in cancer.


Assuntos
Processamento Alternativo/genética , Mutagênese/genética , Neoplasias/genética , Receptores Proteína Tirosina Quinases/genética , Sequência de Bases , Sítios de Ligação , Éxons/genética , Células HEK293 , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/metabolismo , Humanos , Íntrons/genética , Modelos Lineares , Células MCF-7 , Mutação/genética , Proto-Oncogene Mas , Proteínas de Ligação a RNA/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Análise de Sequência de RNA
3.
Sci Rep ; 7(1): 9903, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28852099

RESUMO

The RNA-chaperone Hfq catalyses the annealing of bacterial small RNAs (sRNAs) with target mRNAs to regulate gene expression in response to environmental stimuli. Hfq acts on a diverse set of sRNA-mRNA pairs using a variety of different molecular mechanisms. Here, we present an unusual crystal structure showing two Hfq-RNA complexes interacting via their bound RNA molecules. The structure contains two Hfq6:A18 RNA assemblies positioned face-to-face, with the RNA molecules turned towards each other and connected via interdigitating base stacking interactions at the center. Biochemical data further confirm the observed interaction, and indicate that RNA-mediated contacts occur between Hfq-RNA complexes with various (ARN)X motif containing RNA sequences in vitro, including the stress response regulator OxyS and its target, fhlA. A systematic computational survey also shows that phylogenetically conserved (ARN)X motifs are present in a subset of sRNAs, some of which share similar modular architectures. We hypothesise that Hfq can co-opt RNA-RNA base stacking, an unanticipated structural trick, to promote the interaction of (ARN)X motif containing sRNAs with target mRNAs on a "speed-dating" fashion, thereby supporting their regulatory function.


Assuntos
Proteínas de Escherichia coli/química , Fator Proteico 1 do Hospedeiro/química , Conformação de Ácido Nucleico , RNA/química , Motivos de Aminoácidos , Sequência de Bases , Sítios de Ligação , Proteínas de Escherichia coli/metabolismo , Fator Proteico 1 do Hospedeiro/metabolismo , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , RNA/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Soluções/química , Relação Estrutura-Atividade
5.
Nucleic Acids Res ; 42(Database issue): D259-66, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24214962

RESUMO

The eukaryotic linear motif (ELM http://elm.eu.org) resource is a hub for collecting, classifying and curating information about short linear motifs (SLiMs). For >10 years, this resource has provided the scientific community with a freely accessible guide to the biology and function of linear motifs. The current version of ELM contains ∼200 different motif classes with over 2400 experimentally validated instances manually curated from >2000 scientific publications. Furthermore, detailed information about motif-mediated interactions has been annotated and made available in standard exchange formats. Where appropriate, links are provided to resources such as switches.elm.eu.org and KEGG pathways.


Assuntos
Motivos de Aminoácidos , Bases de Dados de Proteínas , Domínios e Motivos de Interação entre Proteínas , Internet , Complexos Multiproteicos/química
6.
Nat Methods ; 10(8): 715-21, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23900254

RESUMO

Much of what is known about mammalian cell regulation has been achieved with the aid of transiently transfected cells. However, overexpression can violate balanced gene dosage, affecting protein folding, complex assembly and downstream regulation. To avoid these problems, genome engineering technologies now enable the generation of stable cell lines expressing modified proteins at (almost) native levels.


Assuntos
Regulação da Expressão Gênica , Genoma , Transfecção/métodos , Animais , Linhagem Celular , Dosagem de Genes , Humanos , Modelos Moleculares , Mutação , Engenharia de Proteínas/métodos , Transdução de Sinais/genética
7.
Nucleic Acids Res ; 40(Database issue): D242-51, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22110040

RESUMO

Linear motifs are short, evolutionarily plastic components of regulatory proteins and provide low-affinity interaction interfaces. These compact modules play central roles in mediating every aspect of the regulatory functionality of the cell. They are particularly prominent in mediating cell signaling, controlling protein turnover and directing protein localization. Given their importance, our understanding of motifs is surprisingly limited, largely as a result of the difficulty of discovery, both experimentally and computationally. The Eukaryotic Linear Motif (ELM) resource at http://elm.eu.org provides the biological community with a comprehensive database of known experimentally validated motifs, and an exploratory tool to discover putative linear motifs in user-submitted protein sequences. The current update of the ELM database comprises 1800 annotated motif instances representing 170 distinct functional classes, including approximately 500 novel instances and 24 novel classes. Several older motif class entries have been also revisited, improving annotation and adding novel instances. Furthermore, addition of full-text search capabilities, an enhanced interface and simplified batch download has improved the overall accessibility of the ELM data. The motif discovery portion of the ELM resource has added conservation, and structural attributes have been incorporated to aid users to discriminate biologically relevant motifs from stochastically occurring non-functional instances.


Assuntos
Motivos de Aminoácidos , Bases de Dados de Proteínas , Gráficos por Computador , Doença/genética , Eucariotos , Análise de Sequência de Proteína , Interface Usuário-Computador , Proteínas Virais/química
8.
Cell ; 145(6): 902-13, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21663794

RESUMO

Analysis of the regulation of msl-2 mRNA by Sex lethal (SXL), which is critical for dosage compensation in Drosophila, has uncovered a mode of translational control based on common 5' untranslated region elements, upstream open reading frames (uORFs), and interaction sites for RNA-binding proteins. We show that SXL binding downstream of a short uORF imposes a strong negative effect on major reading frame translation. The underlying mechanism involves increasing initiation of scanning ribosomes at the uORF and augmenting its impediment to downstream translation. Our analyses reveal that SXL exerts its effect controlling initiation, not elongation or termination, at the uORF. Probing the generality of the underlying mechanism, we show that the regulatory module that we define experimentally functions in a heterologous context, and we identify natural Drosophila mRNAs that are regulated via this module. We propose that protein-regulated uORFs constitute a systematic principle for the regulation of protein synthesis.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Regulação da Expressão Gênica , Fases de Leitura Aberta , Iniciação Traducional da Cadeia Peptídica , Proteínas de Ligação a RNA/metabolismo , Regiões 5' não Traduzidas , Animais , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Drosophila/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Masculino , Proteínas Nucleares/genética , Biossíntese de Proteínas , Ribossomos/metabolismo , Fatores de Transcrição/genética
9.
Nucleic Acids Res ; 38(Database issue): D167-80, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19920119

RESUMO

Linear motifs are short segments of multidomain proteins that provide regulatory functions independently of protein tertiary structure. Much of intracellular signalling passes through protein modifications at linear motifs. Many thousands of linear motif instances, most notably phosphorylation sites, have now been reported. Although clearly very abundant, linear motifs are difficult to predict de novo in protein sequences due to the difficulty of obtaining robust statistical assessments. The ELM resource at http://elm.eu.org/ provides an expanding knowledge base, currently covering 146 known motifs, with annotation that includes >1300 experimentally reported instances. ELM is also an exploratory tool for suggesting new candidates of known linear motifs in proteins of interest. Information about protein domains, protein structure and native disorder, cellular and taxonomic contexts is used to reduce or deprecate false positive matches. Results are graphically displayed in a 'Bar Code' format, which also displays known instances from homologous proteins through a novel 'Instance Mapper' protocol based on PHI-BLAST. ELM server output provides links to the ELM annotation as well as to a number of remote resources. Using the links, researchers can explore the motifs, proteins, complex structures and associated literature to evaluate whether candidate motifs might be worth experimental investigation.


Assuntos
Motivos de Aminoácidos/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Bases de Dados de Ácidos Nucleicos , Células Eucarióticas/química , Sequência de Aminoácidos , Animais , Biologia Computacional/tendências , Bases de Dados de Proteínas , Humanos , Armazenamento e Recuperação da Informação/métodos , Internet , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Software
10.
J Cell Sci ; 122(Pt 5): 625-35, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19208765

RESUMO

The yeast integral membrane protein Ist2 is encoded by a bud-localised mRNA and accumulates at patch-like domains of the cell periphery, either at the cortical ER or at ER-associated domains of the plasma membrane. Transport of IST2 mRNA and local protein synthesis are not prerequisite for this localisation, indicating that Ist2 can travel through the general ER to membranes at the cell periphery. Here, we describe that the accumulation of Ist2 at the cortical ER requires a cytosolically exposed complex sorting signal that can interact with lipids at the yeast plasma membrane. Binding of the Ist2 sorting signal to lipids and rapid and efficient transport of Ist2 from perinuclear to cortical ER depend on a cluster of lysine residues, the formation of an amphipathic alpha-helix and a patch of hydrophobic side chains positioned at one side of the amphipathic alpha-helix. We suggest that a direct interaction of the Ist2 sorting signal with lipids at the plasma membrane places Ist2 at contact sites between cortical ER and plasma membrane. This provides a physical link of an integral membrane protein of the cortical ER with the plasma membrane and might allow direct transport of proteins from cortical ER to domains of the plasma membrane.


Assuntos
Retículo Endoplasmático/metabolismo , Sinais Direcionadores de Proteínas/genética , Estrutura Secundária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Membrana Celular/química , Membrana Celular/metabolismo , Lipídeos/química , Dados de Sequência Molecular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência
11.
BMC Bioinformatics ; 7: 144, 2006 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-16542452

RESUMO

BACKGROUND: The identification of patterns in biological sequences is a key challenge in genome analysis and in proteomics. Frequently such patterns are complex and highly variable, especially in protein sequences. They are frequently described using terms of regular expressions (RegEx) because of the user-friendly terminology. Limitations arise for queries with the increasing complexity of patterns and are accompanied by requirements for enhanced capabilities. This is especially true for patterns containing ambiguous characters and positions and/or length ambiguities. RESULTS: We have implemented the 3of5 web application in order to enable complex pattern matching in protein sequences. 3of5 is named after a special use of its main feature, the novel n-of-m pattern type. This feature allows for an extensive specification of variable patterns where the individual elements may vary in their position, order, and content within a defined stretch of sequence. The number of distinct elements can be constrained by operators, and individual characters may be excluded. The n-of-m pattern type can be combined with common regular expression terms and thus also allows for a comprehensive description of complex patterns. 3of5 increases the fidelity of pattern matching and finds ALL possible solutions in protein sequences in cases of length-ambiguous patterns instead of simply reporting the longest or shortest hits. Grouping and combined search for patterns provides a hierarchical arrangement of larger patterns sets. The algorithm is implemented as internet application and freely accessible. The application is available at http://dkfz.de/mga2/3of5/3of5.html. CONCLUSION: The 3of5 application offers an extended vocabulary for the definition of search patterns and thus allows the user to comprehensively specify and identify peptide patterns with variable elements. The n-of-m pattern type offers an improved accuracy for pattern matching in combination with the ability to find all solutions, without compromising the user friendliness of regular expression terms.


Assuntos
Algoritmos , Internet , Reconhecimento Automatizado de Padrão/métodos , Proteínas/química , Análise de Sequência de Proteína/métodos , Software , Sequência de Aminoácidos , Inteligência Artificial , Dados de Sequência Molecular , Sistemas On-Line , Alinhamento de Sequência/métodos
12.
Cancer Res ; 65(17): 7733-42, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16140941

RESUMO

Cancer transcription microarray studies commonly deliver long lists of "candidate" genes that are putatively associated with the respective disease. For many of these genes, no functional information, even less their relevance in pathologic conditions, is established as they were identified in large-scale genomics approaches. Strategies and tools are thus needed to distinguish genes and proteins with mere tumor association from those causally related to cancer. Here, we describe a functional profiling approach, where we analyzed 103 previously uncharacterized genes in cancer relevant assays that probed their effects on DNA replication (cell proliferation). The genes had previously been identified as differentially expressed in genome-wide microarray studies of tumors. Using an automated high-throughput assay with single-cell resolution, we discovered seven activators and nine repressors of DNA replication. These were further characterized for effects on extracellular signal-regulated kinase 1/2 (ERK1/2) signaling (G1-S transition) and anchorage-independent growth (tumorigenicity). One activator and one inhibitor protein of ERK1/2 activation and three repressors of anchorage-independent growth were identified. Data from tumor and functional profiling make these proteins novel prime candidates for further in-depth study of their roles in cancer development and progression. We have established a novel functional profiling strategy that links genomics to cell biology and showed its potential for discerning cancer relevant modulators of the cell cycle in the candidate lists from microarray studies.


Assuntos
Genes cdc , Neoplasias/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Animais , Ciclo Celular/genética , Replicação do DNA , Perfilação da Expressão Gênica/métodos , Humanos , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Células NIH 3T3 , Neoplasias/metabolismo , Neoplasias/patologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
13.
Nucleic Acids Res ; 32(2): 742-8, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14762202

RESUMO

The wealth of transcript information that has been made publicly available in recent years requires the development of high-throughput functional genomics and proteomics approaches for its analysis. Such approaches need suitable data integration procedures and a high level of automation in order to gain maximum benefit from the results generated. We have designed an automatic pipeline to analyse annotated open reading frames (ORFs) stemming from full-length cDNAs produced mainly by the German cDNA Consortium. The ORFs are cloned into expression vectors for use in large-scale assays such as the determination of subcellular protein localization or kinase reaction specificity. Additionally, all identified ORFs undergo exhaustive bioinformatic analysis such as similarity searches, protein domain architecture determination and prediction of physicochemical characteristics and secondary structure, using a wide variety of bioinformatic methods in combination with the most up-to-date public databases (e.g. PRINTS, BLOCKS, INTERPRO, PROSITE SWISSPROT). Data from experimental results and from the bioinformatic analysis are integrated and stored in a relational database (MS SQL-Server), which makes it possible for researchers to find answers to biological questions easily, thereby speeding up the selection of targets for further analysis. The designed pipeline constitutes a new automatic approach to obtaining and administrating relevant biological data from high-throughput investigations of cDNAs in order to systematically identify and characterize novel genes, as well as to comprehensively describe the function of the encoded proteins.


Assuntos
Biologia Computacional/métodos , Genômica/métodos , Proteínas/química , Proteínas/genética , Proteômica/métodos , Automação/métodos , DNA Complementar/genética , Bases de Dados Genéticas , Internet , Fases de Leitura Aberta/genética , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA